Abstract

Local depigmentation disorders such as Vitiligo are detrimental for both physiological and psychological reasons and demand a causal, non-invasive treatment. The only available treatment of a kind at present is melanocyte transplantation, disadvantageously dependent on an invasive skin biopsy as melanocyte source. We have previously reported our work on an autologous, non-invasive method of differentiating melanocytes from the outer root sheath of human hair follicles for use in transplantation treatment. Choice of a suitable biocompatible, biodegradable carrier as a temporary niche for transplanted melanocytes can be crucial in such applications. Therefore, we tested decellularized bovine collagen type I scaffold membranes as a candidate for a favourable carrier of the hair follicle melanocytes. This study provides an additional insight to the reported upgraded explant method of cultivating melanocytes from human hair follicle and the advantages of collagen I membrane as a biocompatible carrier for them. We have displayed detailed analysis and detailed interpretation of the methodological improvements, showing that the upgraded explant procedure favoured the release, migration and proliferation of cell content with more cultivating potential and manifold higher melanocyte yield. The three-dimensional culture of melanocytes, seeded on collagen I membranes, displayed regular melanocyte markers, proliferated more rapidly and produced more melanin than the two-dimensional adherent culture. We concluded that the collagen I decellularized scaffolds provided a benevolent niche to hair follicle melanocytes and even upgraded their melanotic properties, which makes collagen I membranes an excellent candidate for a biocompatible carrier in future clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call