Abstract
The aim of this study is to evaluate the role of fibroblast growth factor 21 (FGF21) in nonalcoholic fatty liver disease (NAFLD) and seek to determine if its therapeutic effect is through induction of autophagy. In this research, Monosodium L-glutamate (MSG)-induced obese mice or normal lean mice were treated with vehicle, Fenofibrate, and recombinant murine FGF21, respectively. After 5weeks of treatment, metabolic parameters including body weight, blood glucose and lipid levels, hepatic and fat gene expression levels were monitored and analyzed. Also, fat-loaded HepG2 cells were treated with vehicle or recombinant murine FGF21. The expression levels of proteins associated with autophagy were detected by western blot, real-time PCR, and transmission electron microscopy (TEM). Autophagic flux was monitored by laser confocal microscopy and western blot. Results showed that FGF21 significantly reduced body weight (P<0.01) and serum triglyceride, improved insulin sensitivity, and reversed hepatic steatosis in the MSG model mice. In addition, FGF21 significantly increased the expression of several proteins related to autophagy both in MSG mice and fat-loaded HepG2 cells, such as microtubule associated protein 1 light chain 3, Bcl-2-interacting myosin-like coiled-coil protein-1 (Beclin-1), and autophagy-related gene 5. Furthermore, the evidence of TEM revealed an increased number of autophagosomes and lysosomes in the model cells treated with FGF21. In vitro experimental results also showed that FGF21 remarkably increased autophagic flux. Taken together, FGF21 corrects multiple metabolic parameters on NAFLD in vitro and in vivo by inducing autophagy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have