Abstract

FFT-based convolution is proposed to numerical solve Fresnel–Kirchhoff integral in Fresnel regime carefully and in a very shorter time in comparison to direct solving convolution. To show its capability, the algorithm was implemented to evaluate amplitude of a diffracted plane wave at the focal plane of photon sieves with different focal lengths. The calculated amplitudes are completely the same calculated via convolving operation but has advantageous of taking very very shorter time. The calculation was also repeated using single-FFT algorithm that produce same result for all ranges either below or upper the sampling criteria and different results in comparison to the other two methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.