Abstract

A novel photon sieve structure called clad photon sieve is proposed to generate localized hollow beams and its design principle and focusing properties are studied. The clad photon sieve is composed of the internal zone and external zone with pinholes being positioned on the dark zones. Pinholes in the internal zone and in the external zone give destructive interference to the focus, leading to localized hollow beams being generated on the focal plane. Focusing properties of clad photon sieve with different focal lengths, zone numbers and modulation factors are also studied by theoretical calculations, numerical simulations and experiments, showing that the central dark spot size can be controlled by the focal length and rings number, and the intensity of the central dark spot varies with different modulation factors related with the internal zone and the external zone. This photon sieve can be useful for trapping and manipulating of particles and cooling of atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call