7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.4015/s1016237220500234
Copy DOIPublication Date: Jun 1, 2020 | |
Citations: 4 |
The detection of drowsiness level is important because it is the main reason for fatal road accidents. Electromyography of the upper arm and shoulder is an important physiological signal affected by drivers’ drowsiness, in which its amplitude level and frequency band of the sleep-deprived case are different than those of the alert state. Therefore depending on electromyography (EMG), its drowsiness frequency (80–100[Formula: see text]Hz) was detected in order to determine high drowsiness state based on wavelet packet transform (WPT) which decomposes the EMG signal into its approximation and detail coefficients up to level 4 using db2, db7, sym5 and coif5 wavelets. In this research after extraction, the two higher order statistical features, kurtosis and skewness, are computed from 3[Formula: see text]s window of the three EMG channels, and analysis of variance test is used to check whether their mean values are different for the different classes as both [Formula: see text]-values are less than 0.005 under db2 wavelet. Therefore, they were supplied to feed forward back propagation neural network (FFBPNN) as this type of neural network is used for distinguishing and classification purposes for different objects. They obtained an accuracy of 75% for detecting high levels among other levels of normal and low drowsiness with an average sensitivity of 78.63% and specificity of 75.97% because the spectrum of the EMG alert (non-drowsiness) signal of 80–100 Hz is different from that of drowsy 80–90[Formula: see text]Hz and high drowsy 78–95[Formula: see text]Hz signals.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.