Abstract
We consider the renormalized relativistic Nelson model in two spatial dimensions for a finite number of spinless, relativistic quantum mechanical matter particles in interaction with a massive scalar quantized radiation field. We find a Feynman–Kac formula for the corresponding semigroup and discuss some implications such as ergodicity and weighted Lp\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^p$$\\end{document} to Lq\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^q$$\\end{document} bounds, for external potentials that are Kato decomposable in the suitable relativistic sense. Furthermore, our analysis entails upper and lower bounds on the minimal energy for all values of the involved physical parameters when the Pauli principle for the matter particles is ignored. In the translation invariant case (no external potential), these bounds permit to compute the leading asymptotics of the minimal energy in the three regimes where the number of matter particles goes to infinity, the coupling constant for the matter–radiation interaction goes to infinity and the boson mass goes to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.