Abstract

The novel approach to nonadiabatic quantum dynamics greatly increases the accuracy of the most popular semiclassical technique while maintaining its simplicity and efficiency. Unlike the standard Tully surface hopping in Hilbert space, which deals with population flow, the new strategy in Liouville space puts population and coherence on equal footing. Dual avoided crossing and energy transfer models show that the accuracy is improved in both diabatic and adiabatic representations and that Liouville space simulation converges faster with the number of trajectories than Hilbert space simulation. The constructed master equation accurately captures superexchange, tunneling, and quantum interference. These effects are essential for charge, phonon and energy transport and scattering, exciton fission and fusion, quantum optics and computing, and many other areas of physics and chemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.