Abstract

FETs made on 2-D semiconductors, typically without degenerate doping at the contacts, have a significant Schottky junction (SJ) resistance, which complicates transistor analysis. This paper evaluates the effect of the contact resistance on the 2-D-material FET characteristics through four-terminal (4-T) resistance measurements on WSe2 FETs, which allow studying the channel and contacts characteristics separately. Apart from showing the nonnegligibility of contact resistance, this paper enables a finer understanding of commonly observed phenomena, such as transistor performance improvement with dielectric-encapsulation is observed to have a stronger effect on the contact than the channel; the resistance of the forward-biased SJ is observed to be not negligible, but comparable to that of the reverse-biased junction; at biases commonly referred to as “low-bias,” the WSe2 FET resistance could be dominated by the contacts; and pinchoff can be observed at relatively lower current levels, being related to the channel-contact resistance ratio rather than their magnitudes. In the devices where true channel pinchoff can be verified, a correlation emerges between current saturating behavior and asymmetry in the output characteristics with respect to the drain–source bias polarity, a feature that may serve as a guide toward interpreting standard FET output characteristics in 2-D materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call