Abstract
Goal: In this study, we address the critical challenge of fetal brain extraction from MRI sequences. Fetal MRI has played a crucial role in prenatal neurodevelopmental studies and in advancing our knowledge of fetal brain development in-utero. Fetal brain extraction is a necessary first step in most computational fetal brain MRI pipelines. However, it poses significant challenges due to 1) non-standard fetal head positioning, 2) fetal movements during examination, and 3) vastly heterogeneous appearance of the developing fetal brain and the neighboring fetal and maternal anatomy across gestation, and with various sequences and scanning conditions. Development of a machine learning method to effectively address this task requires a large and rich labeled dataset that has not been previously available. Currently, there is no method for accurate fetal brain extraction on various fetal MRI sequences. Methods: In this work, we first built a large annotated dataset of approximately 72,000 2D fetal brain MRI images. Our dataset covers the three common MRI sequences including T2-weighted, diffusion-weighted, and functional MRI acquired with different scanners. These data include images of normal and pathological brains. Using this dataset, we developed and validated deep learning methods, by exploiting the power of the U-Net style architectures, the attention mechanism, feature learning across multiple MRI modalities, and data augmentation for fast, accurate, and generalizable automatic fetal brain extraction. Results: Evaluations on independent test data, including data available from other centers, show that our method achieves accurate brain extraction on heterogeneous test data acquired with different scanners, on pathological brains, and at various gestational stages. Conclusions:By leveraging rich information from diverse multi-modality fetal MRI data, our proposed deep learning solution enables precise delineation of the fetal brain on various fetal MRI sequences. The robustness of our deep learning model underscores its potential utility for fetal brain imaging.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have