Abstract
Fetal exposure to multiple organic contaminants (OCs) is a public concern because of the adverse effects of OCs on early life development. Infant hair has the potential to be used as an alternative matrix to identify susceptible fetuses, owing to its reliability, sensitivity, and advantages associated with sampling, handling, and ethics. However, the applicability of infant hair for assessing in utero exposure to OCs is still limited. In this study, 57 infant hair samples were collected in Guangzhou, South China, to evaluate the levels and compositions of typical OCs in the fetus. Most of the target OCs were detected in infant hair, with medians of 144 μg/g, 17.7 μg/g, 192 ng/g, 46.9 ng/g, and 1.36 ng/g for phthalate esters (PAEs), alternative plasticizers (APs), organophosphorus flame retardants (OPFRs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs), respectively. Meanwhile, paired maternal hair (0–9 cm from the scalp) was collected to examine the associations between maternal and infant hair for individual compounds. Low-brominated PBDEs tended to deposit in infant hair, with median concentrations approximately two times higher than those in maternal samples. Levels of PBDEs and 4,4′-dichlorodiphenyldichloroethylene (p,p'-DDE) in paired maternal and infant hair showed strong positive correlations (p < 0.05), while most plasticizers (PAEs and APs) were poorly correlated between paired hair samples. Exposure sources were responsible for the variation in correlation between OC levels in the paired infant and maternal samples. Crude relationships between fetal exposure to OCs and birth size were examined using the Bayesian kernel machine regression (BKMR) model. BDE-28 was found to be adversely associated with the birth size. This study provides referential information for evaluating in utero exposure to OCs and their health risks based on infant hair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.