Abstract
Copper (Cu), iron (Fe), and thyroid hormone (TH) deficiencies produce similar defects in late brain development including hypomyelination of axons and impaired synapse formation and function, suggesting that these micronutrient deficiencies share a common mechanism contributing to these derangements. We previously demonstrated that fetal/neonatal Cu and Fe deficiencies lower circulating TH concentrations in neonatal rats. Fe deficiency also reduces whole-brain T(3) content, suggesting impaired TH action in the developing Fe-deficient brain. We hypothesized that fetal/neonatal Cu and Fe deficiencies will produce mild or moderate TH deficiencies and will impair TH-responsive gene expression in the neonatal cerebral cortex and hippocampus. To test this hypothesis, we rendered pregnant Sprague Dawley rats Cu-, Fe-, or TH-deficient from early gestation through postnatal d 10 (P10). Mild and moderate TH deficiencies were induced by 1 and 3 ppm propylthiouracil treatment, respectively. Cu deficiency did not significantly alter serum or tissue TH concentrations or TH-responsive brain mRNA expression. Fe deficiency significantly lowered P10 serum total T(3) (45%), serum total T(4) (52%), whole brain T(3) (14%), and hippocampal T(3) (18%) concentrations, producing a mild TH deficiency similar to 1 ppm propylthiouracil treatment. Fe deficiency lowered Pvalb, Enpp6, and Mbp mRNA levels in the P10 hippocampus. Fe deficiency also altered Hairless, Dbm, and Dio2 mRNA levels in the P10 cerebral cortex. These results suggest that some of the brain defects associated with Fe deficiency may be mediated through altered thyroidal status and the concomitant alterations in TH-responsive gene transcription.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have