Abstract

One of the differences between fetal and adult skin healing is the unique ability of fetal wounds to heal without contracture and scar formation. Studies have shown that the ratio between the three isoforms of TGFbeta is different in adult and fetal wounds. Thus, we analyzed the capacity of adult and fetal human skin fibroblasts to contract collagen gels after stimulation with TGFbeta isoforms. In control medium, fetal fibroblasts had a contractile capacity similar to that of adult fibroblasts. However, the growth capacity of fetal fibroblasts was completely inhibited, in contrast to adult fibroblasts. When cells were treated with TGFbeta, fetal fibroblasts showed an inhibition of their contractile capacity whereas adult fibroblasts further contracted gels. The contractile response was similar for all isoforms of TGFbeta although TGFbeta3 always had the strongest effect. We considered that the regulation of cell contractile capacity by TGFbeta may be dependent on receptor expression for this cytokine, on myofibroblast differentiation of the cells, or in cell links with matrix. Since TGFbeta receptor analysis did not show differences in receptor affinity, we studied the expression of alpha-smooth muscle (SM) actin, a fibroblast contractile marker and of three integrins, the cell surface receptors specific of the attachment of the fibroblasts with collagen matrix. We observed that the expression of alpha-SM actin and alpha3 and beta1 integrin subunits was increased when TGFbeta was added to the medium of adult fibroblasts whereas the levels of the alpha1 and alpha2 subunits were unchanged. In contrast, fetal fibroblasts treated with TGFbeta showed a decrease of alpha1, alpha2, and beta1 integrin expression but no change in alpha3 integrin and in alpha-SM actin expression. These results indicate that intrinsic differences between fetal and adult fibroblasts might explain their opposite responses to TGFbeta stimuli. The variations in their alpha-SM actin and integrin expression patterns represent potentially important mechanisms used by fetal fibroblasts to regulate their response to cytokines, and likely contribute to the resultant differences in the quality of wound repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call