Abstract
In this work, FeSiCr powders were coated with a SiO2 insulation layer for soft magnetic composites (SMCs) through elemental silicon powder hydrolysis, without using any expensive precursors. The effects of the reaction temperature and ammonia concentration on the structure and performance of SMCs were investigated. Through the elemental silicon powder hydrolysis process, the formation of an FeSiCr–SiO2 core-shell structure effectively reduced the core loss, increased resistivity, and improved the quality factor of SMCs. SMCs prepared with 0.10 mL/g ammonia concentration at 50 °C exhibited the best combination of properties, with saturation magnetization Ms = 169.40 emu/g, effective permeability μe = 40.46, resistivity ρ = 7.1 × 106 Ω·cm, quality factor Q = 57.07 at 1 MHz, and core loss Ps = 493.3 kW/m3 at 50 mT/100 kHz. Compared to the uncoated sample, SMCs with a SiO2 coating exhibit 23% reduction in Ps, with only 6.6% reduction in μe. Compared to SMCs fabricated using the traditional sol-gel method, the sample prepared through hydrolysis of elemental silicon powder has higher permeability and lower core loss. In particular, this new approach gives an effective coat solution for the mass production of high-temperature-resistant SMCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.