Abstract
ObjectiveThe family Paenibacillaceae is linked to the order Caryophanales. Paenibacillaceae members residing in compost or soil play crucial roles in nutrient recycling and breaking down complex organic materials. However, our understanding of Paenibacillaceae remains limited. MethodsStrain SYSU GA230002T was conclusively identified using a polyphasic taxonomic approach frequently utilized in bacterial systematics. Standard microbiological techniques were employed to characterize the morphology and biochemistry of strain SYSU GA230002T. ResultsAn anaerobic and gram--negative bacterium, designated SYSU GA230002T, was isolated from geothermally heated soil of Tengchong, Yunnan Province, south-west China. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that strain SYSU GA230002T belongs to the family Paenibacillaceae. 16S rRNA gene sequence similarity (<94.0 %), ANI (<71.95 %) and AAI values (<58.67 %) between strain SYSU GA230002T with other members of the family were lower than the threshold values recommended for distinguishing novel species. Growth was observed at 30-45 °C (optimum, 37 °C), pH 7.0–8.0 (optimum, pH 7.5) and in 0–3.0 % (w/v) NaCl concentrations (optimum, 0 %). The major fatty acids detected were anteiso-C15:0, iso-C16:0 and iso-C17:0. The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified phospholipid, one unidentified aminolipid and two unidentified glycolipids. The respiratory quinone was MK-7. The DNA G + C content of strain SYSU GA230002T was 49.87 %. ConclusionBased on the results of morphological, physiological properties, and chemotaxonomic characteristics, this strain is proposed to represent a new species of a new genus Ferviditalea candida gen. nov., sp. nov. The type strain of the type species is SYSU GA230002T (=KCTC 25726T = GDMCC 1.4160T).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.