Abstract

Free ferulic acid (FA) is a natural compound with antioxidant properties which mitigates the negative effects of cold stress in sheep; however, its impact on thermoregulatory responses in heat-stressed sheep has not been defined. The objective was to evaluate the effects of FA supplementation on physiological responses, serum analyte concentrations, and the hematological profile of heat-stressed hair ewe lambs. Twenty-two Dorper × Katahdin ewe lambs (initial body weight = 23.5 ± 2.8kg and age = 4months) were housed in individual pens for 40days and assigned under a randomized complete block design to the following treatments (n = 11): basal diet with 0 (control) or 250mg of FA/kg of feed. The FA × sampling day interaction only affected serum concentration of some metabolic hormones; particularly on day 20 of the trial, FA increased (P < 0.01) insulins and the insulin to glucose ratio while decreased (P = 0.05) thyroxine. Overall, supplemental FA did not affect rectal temperature, respiratory rate, most body surface temperatures, feedlot performance, and serum concentrations of metabolites, electrolytes, triiodothyronine, and cortisol. In addition, FA only tended to decrease (P ≥ 0.09) erythrocyte count and plaquetocrit and to increase (P = 0.08) mean corpuscular volume. In conclusion, FA supplementation did not improve the growth nor thermoregulatory capacity of heat-stressed hair ewe lambs. Still, it partially modulated the metabolism to reinforce some energetic adaptive mechanisms when the ambient temperature was ≥ 35°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.