Abstract

Flowering pears are popular landscape plants due to a combination of desirable traits including broad adaptability, pest resistance, and attractive ornamental features. However, in some areas, flowering pears readily reseed and naturalize. Considering the value and utility of these trees, the development of infertile cultivars would be desirable. Breeding of triploid plants is one of the approaches that has been successfully used to develop seedless cultivars of many crops. The objective of this study was to evaluate female fertility and reproductive pathways of triploid flowering pear hybrids. Female fertility was characterized by evaluating fruit set, seeds per fruit, seed germination, seedlings per flower, and percent relative fertility [(seedlings per flower for triploid/seedlings per flower for diploid control) × 100]. Flow cytometry was used to determine relative genome sizes and ploidy levels of female parents, seedlings, and seeds (both embryo and endosperm) and to make inferences regarding reproductive pathways. Mean holoploid genome sizes were confirmed for the diploid [1.25 ± 0.05 (se) pg] and triploid [1.88 ± 0.12 (se) pg] female parents. Relative female fertility was significantly reduced in triploids, but varied considerably among accessions and ranged from 0.0% to 33.6%. Of the 13 triploids used in this study, five accessions had a relative fertility of <2%. One accession had no measurable female fertility. Cytometric analysis of seeds and seedlings from triploid maternal parents showed that they were predominantly abnormal aneuploids, which typically results in seedlings with reduced fitness and fertility. Fertilization with unreduced gametes, apomixis, and pseudogamy were documented in triploid-derived embryos/offspring, but were relatively uncommon. The considerable reduction in female fertility of some triploid selections, coupled with the limited production of primarily aneuploid progeny, provides desirable options for new infertile flowering pears to prevent or reduce reseeding and naturalizing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call