Abstract
Polycrystalline Si0.9654Mn0.0346 films codoped with boron have been prepared by rf magnetron sputtering deposition followed by fast thermal processing for crystallization. Magnetic property investigation indicated that the film consists of two ferromagnetic phases. The low Curie temperature ferromagnetic phase (TC~50K) is due to the Mn4Si7 phase in the film as detected by X-ray diffraction (XRD), while the high temperature phase (TC~250K) results from the incorporation of Mn into silicon. The polycrystalline thin films were treated by hydrogen passivation for about 4 minutes using radio-frequency plasma enhanced chemical vapor deposition (PECVD). After hydrogenation, the saturation magnetization increases with the increase of hole concentration in the films. The magnetic properties are closely related to the transport properties of the polycrystalline Si0.9654Mn0.0346 films, which suggests a mechanism of hole-mediated ferromagnetism in Si-based diluted magnetic semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.