Abstract

Non-stoichiometric alloys Ni 1− x− y Mn x Ga y characterised by different values of MSME (from 0.2% to 7.3%) were studied using ferromagnetic resonance (FMR). The angular dependence of the FMR signals was measured in the martensitic and austenitic states of the samples just before and after martensite–austenite transition. Experimental data were used for the determination of the magnetisation 4 πM s and anisotropy parameters K 1, K 2 for the martensitic state and K 1c for the austenitic state. All studied alloys were characterised by large values of the anisotropy parameters of the first and second orders. A special feature of the alloys possessing high MSME is a larger value of the coefficient K 2. The temperature dependence of the FMR signals was investigated in the temperature range from below M s to above T C, where FMR was replaced by conduction electron spin resonance (CESR). Magnetically induced strain in the martensitic phase was measured as a function of the applied magnetic field. The main difference between the alloys in the martensitic state revealing the large or small MSM strain is the behaviour of the electronic structure. In the alloys with the small MSM strain, all the electrons are involved in the ferromagnetic system. On the contrary, in the alloy with the large MSM strain, the narrow resonance line of one electron subsystem is present separately in the FMR spectra. An intensive signal of CESR is observed in the alloys with the large MSME, which is an evidence for a high concentration of free electrons. The suggestion made is that the high concentration of free electrons, i.e. enhanced metallic character of interatomic bonds, assists MSME.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.