Abstract

Spin and charge fluctuations and superconductivity in NaxCoO2.yH(2)O are studied based on a multiorbital Hubbard model. Tight-binding parameters are determined to reproduce the results of band calculations. By applying the fluctuation-exchange approximation, we show that the Hund's-rule coupling between the Co t(2g) orbitals causes ferromagnetic (FM) spin fluctuation. Triplet fy((y(2)-3x(2)))-wave and p-wave pairings are favored by this FM fluctuation on the hole-pocket band. We propose that, in NaxCoO2.yH(2)O, the Co t(2g) orbitals and interorbital Hund's-rule coupling play important roles on the triplet pairing, and this compound can be a first example of the triplet superconductor in which the orbital degrees of freedom play substantial roles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call