Abstract

In the recently discovered Co-oxide superconductor Na_xCoO_2*yH_2O, the edge-shared CoO6 octahedra are trigonally contracted along the c-axis in the CoO2-plane. We study how this CoO6 distortion affects the magnetic properties and superconductivity in this compound by analyzing the multiorbital Hubbard model using the fluctuation-exchange approximation. It is shown that through generating the trigonal crystal field, the distortion pushes the Co e'g bands up and consequently gives rise to the hole-pocket Fermi surfaces, which have been predicted in the band calculations. As the distortion increases, the hole pockets are enlarged and the ferromagnetic fluctuation as well as the pairing instability increases, which is in good agreement with recent NQR results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.