Abstract

Systems composed of molecular rotors are promising candidates as quantum devices. In this work, we employ our recently developed density matrix renormalization group approach to study such a rotor system, namely, linear chains of rotating para-water molecules encapsulated in a (6,5)-carbon nanotube. We show that the anisotropic environment provided by the nanotube breaks the inversion symmetry of the chain. This symmetry breaking lifts the degeneracy of the ground state and leads to a splitting between the left- and right-polarized states. In turn, a ferroelectric phase in nanoscopic systems is created, with a polarization that can be switched in a manner analogous to that of a supramolecular qubit. We present results for a few low-lying states and discuss the effect of external electric fields on the energy splitting and the occurrence of a quantum phase transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call