Abstract
This paper discusses a new ferroelectric polymer with high dielectric constant (>50 at 1K-1M Hz) and large electrostrictive response (~5%) at ambient temperature, which is based on a processable semicrystalline terpolymer comprising vinylidene difluoride (VDF), trifluoroethylene (TrFE), and chlorotrifluoroethylene (CTFE). This VDF/TrFE/CTFE terpolymer was prepared by a combination of a borane/oxygen initiator and bulk polymerization process at ambient temperature. The control of monomer addition afforts the terpolymers with high molecular weight and relatively narrow molecular weight and composition distributions. The incorporated bulky CTFE units homogeneously distributed along the polymer chain seem to reduce the thickness of ferroelectric crystalline domains without destroying the overall crystallinity. This nano-size semicrystalline morphology results in the reduction of ferroelectric-paraelectric (F-P) phase transition to near ambient temperature with a very small energy barrier. Some terpolymers exhibited common ferroelectric relaxor behaviors with a broad dielectric peak that shifted toward higher temperatures as the frequency increased, and a slim polarization hysteresis loop at near the dielectric peak (around ambient temperature) that gradually evolved into a normal ferroelectric polarization hysteresis loop with reduced temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have