Abstract
A multiscale regulation strategy has been demonstrated for synthetic energy storage enhancement in a tetragonal tungsten bronze structure ferroelectric. Grain refining and second-phase precipitation (perovskite phase) are introduced in the BaSrTiNb2-xTaxO9 ceramics by regulating the composition and sintering process. Disordered polarization and distribution, chemical inhomogeneity, and insulating boundary layers are achieved to provide the fundamental structural origin of the relaxation characteristic, high breakdown strength, and superior energy storage performance. Thus, an ultrahigh energy storage density of 12.2 J cm−3 with an low energy consumption was achieved at an electric field of 950 kV cm−1. This is the highest known energy storage performance in tetragonal tungsten bronze-based ferroelectric. Notably, this ceramic shows remarkable stability over frequency, temperature, and cycling electric fields. This work brings new material candidates and structure design for developing of energy storage capacitors apart from the predominant perovskite ferroelectric ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.