Abstract

An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroelectric gate operation for 1T nonvolatile ferroelecetric memory applications. Here we explore a silicon-based ferroelectric field effect transistor with P(VDF-TrFE) gate showing a persistent switching of the drain current with the “on”/“off” current ratio of 103–102 and retention exceeding 5 days. The physical mechanism of the retention loss has been addressed by monitoring the drain current relaxation in combination with the time-resolved piezo-force scanning probe microscopy. The results suggest that the retention loss is controlled by the polarization screening due to the charge injection into the interface-adjacent layer rather than the polarization loss due to the depolarization effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.