Abstract

Domain walls affect significantly ferroelectric and magnetic properties of magnetoelectric multiferroics. The stereotype is that the ferroelectric polarization will reduce at the domain walls due to the incomplete shielding of depolarization field or the effects of gradient energy. By combining transmission electron microscopy and first-principles calculations, we demonstrate that the ferroelectric polarization of tail-to-tail 180° domain walls in ε-Fe2O3 is regulated by the bound charge density. A huge enhancement (43%) of ferroelectric polarization is observed in the type I domain wall with a low bound charge density, while the ferroelectric polarization is reduced to almost zero at the type II domain wall with a high bound charge density. The magnetic coupling across the type I and type II ferroelectric domain walls are antiferromagnetic and ferromagnetic, respectively. Revealing mechanisms for enhancing ferroelectric polarization and magnetic behaviors at ferroelectric domain walls may promote the fundamental research and potential applications of magnetoelectric multiferroics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.