Abstract

We report scanned probe characterizations of the ferroelectric phase transition in individual barium titanate (BaTiO3) nanowires. Variable-temperature electrostatic force microscopy is used to manipulate, image, and evaluate the diameter-dependent stability of ferroelectric polarizations. These measurements show that the ferroelectric phase transition temperature (TC) is depressed as the nanowire diameter (dnw) decreases, following a 1/dnw scaling. The diameter at which TC falls below room temperature is determined to be approximately 3 nm, and extrapolation of the data indicates that nanowires with dnw as small as 0.8 nm can support ferroelectricity at lower temperatures. We also present density functional theory (DFT) calculations of bare and molecule-covered BaTiO3 surfaces. These calculations indicate that ferroelectricity in nanowires is stabilized by molecular adsorbates such as OH and carboxylates. These adsorbates are found to passivate polarization charge more effectively than metallic electrodes, explaining the observed stability of ferroelectricity in small-diameter BaTiO3 nanowires.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call