Abstract

Triglycine sulphate (TGS) is a widely studied ferroelectric material due to its high pyroelectric coefficients and pure 2nd order phase transition of the order-disorder type. In this work, we report local piezoelectric properties and domain evolution in TGS via piezoresponse force microscopy (PFM) where the ferroelectric-paraelectric phase transition and its domain structure are visualized in a single image while slowly heating the crystal during scanning. Thus, the y-coordinate of the scan represents the temperature and serves as a temperature “lens” to zoom in peculiarities of the domain evolution and paraelectric-ferroelectric phase boundary. Strong shift of the Curie point and broad peak of the second harmonic PFM signal are rationalized in terms of the stabilization of ferroelectric phase at the surface and large contribution of the dielectric constant to the local electromechanical measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.