Abstract

The applications of transition metal oxides as photovoltaic and photocatalytic materials are mainly impeded by their poor visible light absorption, low photogenerated carrier mobility, and low valence band position, which originate from the generally large band gap (≥3 eV), narrow transition metal d states, and deep oxygen 2p states. Here, we conceive a design strategy to realize small band gap polar oxides with high carrier mobilities by combining small radii A cations with Bi3+/Bi5+ charge disproportion. We show that these cation sizes and chemical features shift the valence band edge to higher energies and therefore reduce the band gap, promoting the formation of highly dispersive Bi 6s states near the Fermi level as a byproduct. By means of advanced many-electron-based first-principles calculations, we predict a new family of thermodynamically stable/metastable polar oxides ABiO3 (A = Ca, Cd, Zn, and Mg), which adopt the Ni3TeO6-type (space group R3) structure and exhibit optical band gaps of ∼2.0 eV,...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.