Abstract

Controllable contraception in male animals was demonstrated through the utilization of gold nanorods' photothermal effect to accomplish mild testicular hyperthermia. However, the challenges arising from testicular administration and the non-biodegradability of nanoparticles hinder further clinical implementation. Therefore, a straightforward, non-invasive, and enhanced contraception approach is required. This study explores the utilization of human heavy chain ferritin (HFn) nanocarriers loaded with aggregation-induced emission luminogens (AIEgens) for noninvasive, controllable male contraception guided by Near-Infrared-II (NIR-II) fluorescence imaging. The HFn-caged AIEgens (HFn@BBT) are delivered via intravenous injection and activated by near-infrared irradiation. Lower hyperthermia treatment induces partial damage to the testes and seminiferous tubules, reducing fertility indices by approximately 100% on the 7th day, which gradually recovers to 80% on the 60th day. Conversely, implementation of elevated hyperthermia therapy causes total destruction of both testes and seminiferous tubules, leading to a complete loss of fertility on the 60th day. Additionally, the use of AIEgens in NIR-II imaging offers improved fluorescence efficiency and penetration depth. The findings of this study hold significant promise for the advancement of safe and effective male contraceptive methods, addressing the need for noninvasive and controllable approaches to reproductive health and population control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.