Abstract

Ammonium perchlorate (APC) is the most common oxidizer in use for solid rocket propulsion systems. However its initial thermal decomposition is an endothermic process that requires 102.5 J/g. This behavior involves high activation energy and could render high burning rate regime. This study reports on the sustainable fabrication of barium ferrite nanoparticles as a novel catalyzing agent for APC oxidizer. Colloidal BaFe12O19 nanoparticles with consistent product quality were fabricated using hydrothermal processing. TEM micrographs demonstrated mono-dispersed particles of 10 nm particle size. XRD diffractogram demonstrated highly crystalline material. The synthesized colloidal BaFe12O19 particles were effectively coated with APC particles via co-precipitation using fast-crash solvent–antisolvent technique. The impact of ferrite particles on APC thermal behavior has been investigated using DSC and TGA techniques. APC demonstrated an initial endothermic decomposition stage at 142 °C with subsequent two exothermic decomposition stages at 297.8 and 452.8 °C respectively. At 1 wt%, barium ferrite offered decrease in initial endothermic decomposition stage by 42.5%. The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 19.7%. These novel features can inherit ferrite particles unique catalyzing ability for advanced highly energetic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call