Abstract

The progressive addition of the reactive silica from rice husk ash (10–50 wt%) changes the phases evolution and the microstructure of the laterites based geopolymer composites. It was found that the presence of soluble silica enhanced the formation of Si–(A)-OH–Fe bonds and changed considerably the FTIR and XRD patterns of the products: polysialates, ferrosialates and ferrisilicates were present into the matrices. The solid/liquid ratio and the curing cycle influenced the pore network, the bulk density, the total pore areas, and the final microstructure. The relative low viscous paste that is maintained at ambient temperature for 1–2 h before curing at 90 °C gave better cohesion and low porosity resulting to the high concentration of strongest (Fe–O–Si) bonds compared to pastes cured directly after preparation or those with high viscosity.While polysialates and ferrosilicates are hindered in the case of quite treatment at 80 °C due to the rapid evaporation of water, polysialates, ferrosialates and polynuclear ferrisilicates complexes are formed at room temperature and polynuclear complexes can growth to more crystalline phases with the increase of the temperature. Ferrisilicates integrated the interlayers of the matrix improving the geopolymerization with significant modification of the microstructure. Those newly formed phases are promising components for the development of eco-friendly and sustainable high strength composites, porous matrices for filtration, heavy metal removal/immobilization, membranes for catalysis and template for new carbone replicate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.