Abstract
Abstract: Rice Husk Ash (RHA) and Cow Dung Ash (CDA) are agriculturally based pozzolanic materials, these materials are available in huge quantities. This final year project report highlights and presents the results of the study on the use of Cow Dung Ash and Rice Husk Ash as partial replacement of cement in concrete. The experiments were conducted to study the impacts of adding Cow Dung Ash and Rice Husk Ash in several percentages by weight (0%, 5%, 10%, 15%, and 20%) of cement and cure for periods of 28 days before testing for compression strength. The consistency, workability, sieve analysis of aggregates were also tested in this research study. The Compressive test results are 37.75 N/mm2, 31.25 N/mm2, 31.25N/mm2 and 25.25 N/mm2 for 0%, 5%, 10% and 15% replacement of cement with Cow Dung Ash and Rice Husk Ash respectively at 28days. The Workability results gives 45mm, 49mm, 56mm, 68mm and 75mm respectively for 0%,5%, 10%, 15%, and 20% replacement of cement with Cow Dung Ash and Rice Husk Ash. The consistency test results are 0.29, 0.32, 0.36, 0.41 and 0.43 for 0%, 5%, 10%, 15% and 20% replacement of cement with Cow Dung Ash and Rice Husk Ash respectively. The bulk density results are 2452.53 kg/m3, 2370.8 kg/m3, 2380.0 kg/m3 and 2348.5 kg/m3 for 0%, 5%, 10% and 15% replacement of cement with Cow Dung Ash and Rice Husk Ash respectively. The main highlights, it should be highlighted that the more quantity of water is required to standard consistency as the percentages of Cow Dung Ash and Rice Husk Ash are added. Dung Ash and Rice Husk Ash concrete is recommended for use when a ten percentage (10%) of Cow Dung Ash and rice husk ash are not exceeded. Keywords: Cow dung ash, Rice husk ash, workability, standard consistency, Slump test, bulk density, compressive strength
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.