Abstract

The presence of organic micropollutants in water sources worldwide has created a need for the development of effective and selective oxidation methods in complex water matrices. This study is the first report of the combination of ferrate(VI) (Fe(VI)) and periodate (PI) for synergistic, rapid, and selective elimination of multiple micropollutants. This combined system was found to outperform other Fe(VI)/oxidant systems (e.g., H2O2, peroxydisulfate, and peroxymonosulfate) in rapid water decontamination. Scavenging, probing, and electron spin resonance experiments showed that high-valent Fe(IV)/Fe(V) intermediates, rather than hydroxyl radicals, superoxide radicals, singlet oxygen, and iodyl radicals, played a dominant role in the process. Further, the generation of Fe(IV)/Fe(V) was evidenced directly by the 57Fe Mössbauer spectroscopic test. Surprisingly, the reactivity of PI toward Fe(VI) is rather low (0.8223 M-1 s-1) at pH 8.0, implying that PI was not acting as an activator. Besides, as the only iodine sink of PI, iodate also played an enhanced role in micropollutant abatement by Fe(VI) oxidation. Further experiments proved that PI and/or iodate might function as the Fe(IV)/Fe(V) ligands, causing the utilization efficiency of Fe(IV)/Fe(V) intermediates for pollutant oxidation to outcompete their auto-decomposition. Finally, the oxidized products and plausible transformation pathways of three different micropollutants by single Fe(VI) and Fe(VI)/PI oxidation were characterized and elucidated. Overall, this study proposed a novel selective oxidation strategy (i.e., Fe(VI)/PI system) that could efficiently eliminate water micropollutants and clarified the unexpected interactions between PI/iodate and Fe(VI) for accelerated oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call