Abstract
We consider fermionic fully-packed loop and quantum dimer models which serve as effective low-energy models for strongly correlated fermions on a checkerboard lattice at half and quarter filling, respectively. We identify a large number of fluctuationless states specific to each case, due to the fermionic statistics. We discuss the symmetries and conserved quantities of the system and show that for a class of fluctuating states in the half-filling case, the fermionic sign problem can be gauged away. This claim is supported by numerical evaluation of the low-lying states and can be understood by means of an algebraic construction. The elimination of the sign problem then allows us to analyze excitations at the Rokhsar-Kivelson point of the models using the relation to the height model and its excitations, within the single-mode approximation. We then discuss a mapping to a U(1) lattice gauge theory which relates the considered low-energy model to the compact quantum electrodynamics in 2+1 dimensions. Furthermore, we point out consequences and open questions in the light of these results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.