Abstract
We report low resistance Ohmic contacts on n-Ge using a thin ZnO interfacial layer (IL) capped with Ti. A 350°C post metallization anneal is used to create oxygen vacancies that dope ZnO heavily n-type (n+). Rectifying Ti/n-Ge contacts become Ohmic with 1000× higher reverse current density after insertion of n+-ZnO IL. Specific resistivity of ∼1.4×10−7 Ω cm2 is demonstrated on epitaxial n+-Ge (2.5×1019 cm−3) layers. Low resistance with ZnO IL can be attributed to (a) low barrier height from Fermi-level unpinning, (b) good conduction band alignment between ZnO and Ge, and (c) thin tunneling barrier due to the n+ doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.