Abstract

From the investigation of the electrical transport properties of single crystalline Bi2−xSbxSe2Te (x = 0.0, 0.6, 0.8, 1.0, 1.2 and 1.4) compounds, we observed a systematic change of the Fermi level from n-type metallic (x = 0.0 and 0.6) or small-gap semiconducting (x = 0.8) to p-type semiconducting (x = 1.0) and metallic (x = 1.2 and 1.4), respectively, with increasing Sb-substitution concentration based on temperature-dependent electrical resistivity ρ(T) and Hall resistivity ρxy(H) measurements, respectively. The parent compound Bi2Se2Te exhibits linear negative magnetoresistance at low magnetic fields (H ⩽ 1 T) by weak localization. The intermediate doped compounds of x = 0.8 and 1.0 showed weak antilocalization (WAL) and weak localization (WL) crossover behavior from the field-dependent magnetoresistance measurements at low temperatures. From the Hikami–Larkin–Nagaoka analysis of the compounds (x = 0.8 and 1.0), we found that there is a competing behavior between WL and WAL in terms of Sb-doping and magnetic field strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.