Abstract
In topological Weyl semimetals, the low energy excitations are comprised of linearly dispersing Weyl fermions, which act as monopoles of Berry curvature in momentum space and result in topologically protected Fermi arcs on the surfaces. We propose that these Fermi arcs in Weyl semimetals lead to an anisotropic magnetothermal conductivity, strongly dependent on externally applied magnetic field and resulting from entropy transport driven by circulating electronic currents. The circulating currents result in no net charge transport, but they do result in a net entropy transport. This translates into a magnetothermal conductivity that should be a unique experimental signature for the existence of the arcs. We analytically calculate the Fermi arc-mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultra-quantum limit, where only the chiral Landau levels are involved. By numerically including the effects of higher Landau levels, we show how the two limits are linked at intermediate magnetic fields. This work provides the first proposed signature of Fermi arc-mediated thermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in experimental thermal applications.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have