Abstract

Factorial fermentation experiments on food waste (FW) inoculated with activated sludge (AS) were conducted to investigate the effects of pH and the inoculum-to-substrate ratio (ISR [g VSAS/g TOCFW]) on biohydrogen production. The two parameters affected the H2 yield, the fermentation rate and the biochemical pathways. The minimum and maximum yields were 41 L H2/kg TOCFW (pH = 7.5, ISR = 1.74) and 156–160 L H2/kg TOCFW (pH = 5.5, ISR = 0.58 and 1.74). The range of carbohydrates conversion into H2 was 0.37–1.45 mol H2/mol hexose, corresponding to 9.4–36.2% of the theoretical threshold. A second-order predictive model for H2 production identified an optimum region at low pHs and high ISRs, with a theoretical maximum of 168 L H2/kg TOCFW at pH = 5.5 and ISR = 1.74. The Spearman’s correlation method revealed several relationships between the variables, suggesting the potentially governing metabolic pathways, which turned out to involve both hydrogenogenic pathways and competing reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.