Abstract

Dark fermentation (DF) of kitchen waste (KW) is a promising technology for the production of renewable biohydrogen. It can be both a method of obtaining clean energy and a sustainable waste management. Despite its potential, this process requires further research to improve efficiency. The aim of the research was to test the effect of thermal pretreatment of the inoculum on H2 and volatile fatty acids (VFAs) production in the DF process. The process was carried out at 37 °C, in batch mode. The digested sludge from the Group Wastewater Treatment Plant in Lodz was used as inoculum. KW from households was used as substrate. The inoculum was pre-treated at 70 °C for 15 and 30 min. Two control reference experiments were also used. The first without the inoculum, and the second without heating the inoculum. The thermal pretreatment inhibited methane production and increased hydrogen production. After the thermal pretreatment, the amount of CO2 produced during the process decreased compared to the bioreactor without inoculum pretreatment. Additionally, the main VFAs in the samples with pretreated inoculum were acetic and butyric acids, which are associated with hydrogen production in the biochemical pathways of the DF process. However, the time of thermal pretreatment had no significant effect on H2 production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call