Abstract

The refraction of a light ray by a homogeneous, isotropic and non-dispersive transparent material half-space in uniform rectilinear motion is investigated theoretically. The approach is an amalgamation of the original Fermat's principle and the fact that an isotropic optical medium at rest becomes optically anisotropic in a frame where the medium is moving at a constant velocity. Two cases of motion are considered: (a) the material half-space is moving parallel to the interface; (b) the material half-space is moving perpendicular to the interface. In each case, a detailed analysis of the obtained refraction formula is provided, and in the latter case, an intriguing backward refraction of light is noticed and thoroughly discussed. The results confirm the validity of Fermat's principle when the optical media and the boundaries between them are moving at relativistic speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.