Abstract

BackgroundThere are a lot of unmet needs in patients with triple-negative breast cancer (TNBC). Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist, has been used for decades to treat hypertriglyceridaemia and mixed dyslipidaemia. Recent studies show that it might have anti-tumor effects, however, the mechanism remains unclear. Here, we assessed the ability of fenofibrate to induce apoptosis of TNBC in vitro and in vivo and explored involved mechanisms.MethodsMTT method was used to evaluate the anti-proliferation effect of fenofibrate, and invert microscope to observe the apoptotic morphological changes. The percentage of apoptotic cells and distribution ratios of cell cycle were determined by flow cytometric analysis. The related protein levels were measured by Western blot method. The changes of genes and pathways were detected by gene expression profiling. The tumor growth in vivo was assessed by MDA-MB-231 xenograft mouse model. Terminal deoxytransferase-catalyzed DNA nick-end labeling (TUNEL) assay was employed to estimate the percentage of apoptotic cells in vivo. In order to evaluate the safety of fenofibrate, blood sampled from rat eyes was detected.ResultsWe found that fenofibrate had anti-proliferation effects on breast cancer cell lines, of which the first five most sensitive ones were all TNBC cell lines. Its induction of apoptosis was independent on PPAR-α status with the highest apoptosis percentage of 41.8 ± 8.8%, and it occurred in a time- and dose-dependent manner accompanied by up-regulation of Bad, down-regulation of Bcl-xl, Survivin and activation of caspase-3. Interestingly, activation of NF-κB pathway played an important role in the induction of apoptosis by fenofibtate and the effect could be almost totally blocked by a NF-κB specific inhibitor, pyrrolidine dithiocarbamate (PDTC). In addition, fenofibrate led to cell cycle arrest at G0/G1 phase accompanied by down-regulation of Cyclin D1, Cdk4 and up-regulation of p21, p27/Kip1. In vivo, fenofibrate slowed down tumor growth and induced apoptosis with a good safety profile in the MDA-MB-231 xengograft mouse model.ConclusionsIt is concluded that fenofibrate induces apoptosis of TNBC via activation of NF-κB pathway in a PPAR-α independent way, and may serve as a novel therapeutic drug for TNBC therapy.

Highlights

  • There are a lot of unmet needs in patients with triple-negative breast cancer (TNBC)

  • It is concluded that fenofibrate induces apoptosis of TNBC via activation of NF-κB pathway in a peroxisome proliferator-activated receptorα (PPAR-α) independent way, and may serve as a novel therapeutic drug for TNBC therapy

  • Fenofibrate inhibited the proliferation of T47D, MCF-7 and SKBR3 cells, when compared with TNBC cell lines, they were comparatively less responsive and their Half maximal inhibitory concentration (IC50) were all above 80 μM (Figure 1B)

Read more

Summary

Introduction

There are a lot of unmet needs in patients with triple-negative breast cancer (TNBC). Recent studies show that it might have anti-tumor effects, the mechanism remains unclear. We assessed the ability of fenofibrate to induce apoptosis of TNBC in vitro and in vivo and explored involved mechanisms. Based on different gene expression profiles, breast cancer is classified into at least four subtypes [1]. Triple-negative breast cancer (TNBC) is a special subtype of breast cancer, which is defined as the absence of estrogen and progesterone receptor expression as well as ERBB2 amplification. When compared with other subtypes of breast cancer, TNBC has no response to endocrine or anti-ERBB2 therapies and systemic chemotherapy is the major treatment for those patients after metastasis. New effective and safe drugs are urgently needed to be found

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call