Abstract

Four copper-based catalysts were prepared by co-precipitation method. The catalysts were characterized by scanning electron microscopy, N2 adsorption-desorption, temperature programmed reduction process (H2-TPR), X-ray diffraction (XRD) and in-situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) to explore the effects of different components on catalyst activity. The performance of different catalysts for hydrogen production via methanol steam reforming was evaluated on a fixed-bed reactor. The effects of different components, reaction temperature and gas hourly space velocity (GHSV) on the catalytic performance were investigated. The results exhibited that among the investigated catalysts, 1# and 2# catalysts had the higher catalytic activity and stability. Under the conditions of 280 °C, a molar ratio of methanol to water of 1:1.3, and a GHSV of 13.3 L/(g·h), the methanol conversion rate reached 99.9%, the CO concentration was as low as 0.29%, and the selectivity was only 1.16%. The H2 production flow rate per unit mass of catalyst was 270 mL/(min·g). After 60 h of start-stop experiments, the methanol conversion rate remained above 98.4%, the CO concentration was always lower than 0.5%, and the start-up speed was significantly faster than that of the commercial catalyst M650. This study provided an effective method for the preparation of catalysts for methanol steam reforming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.