Abstract

In this study, the detailed mechanism of soot formation under high temperature pyrolysis of 2-methylfuran (2-MF) has been investigated by using Reactive force field molecular dynamics (ReaxFF MD) simulation. The MD analysis shows that 2-MF undergoes ring cleavage and the removal of CO/HCO/CH2CO/CH3CO, which results in the production of the C2-C4 species, promoting the formation of the initial ring molecules. The clustering of hydrocarbons by radical-chain reaction (CHRCR) mechanism plays a significant role in the mass growth of both polycyclic aromatic hydrocarbons (PAHs) and initial soot particles. The main contributors to this process are C2H2 and resonance-stabilized free radicals of C3 and C4. The H-abstraction-C2H2-addition (HACA) mechanism is important for the formation of surface active sites for PAHs and initial soot to some extent. In addition, the soot formation capacity of 2,5-dimethylfuran (25DMF) and 2-MF are compared. Under the same simulation conditions, 25DMF exhibits a higher capacity to form soot. Compared with 2-MF, 25DMF pyrolysis forms more ring-containing species at the initial stage, particularly cyclopentadiene and its derivatives. These compounds have the ability to promote the formation of PAHs, thus providing further support to the experimental-based theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.