Abstract

Exploring effective ways to detect intermediates during the electrochemical CO2 reduction reaction (CO2RR) process is pivotal for understanding reaction pathways and underlying mechanisms. Recently, two-dimensional FeN4-embedded graphene has received increasing attention as a promising catalyst for CO2RR. Here, by means of density functional theory computations combined with the non-equilibrium Green's function (NEGF) method, we proposed a detection device to evaluate the performance of FeN4-embedded graphene in intermediates detection during the CO2RR process. Our results reveal that the four key intermediates, including *COOH, *OCHO, *CHO, and *COH, can be chemisorbed on FeN4-embedded graphene with high adsorption energies and appropriate charge transfer. The computed current-voltage (I-V) characteristics and transmission spectra suggest that the adsorption of these intermediates induces significant type-dependent changes in currents and transmission coefficients of FeN4-embedded graphene. Remarkably, the FeN4-embedded graphene is more sensitive to *COOH and *COH than to *OCHO and *CHO within the entire bias window. Consequently, our theoretical study indicates that the FeN4-embedded graphene can effectively detect the key intermediates during the CO2RR process, providing a practical scheme for identifying catalytic reaction pathways and elucidating underlying reaction mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.