Abstract

Laser ablation has proven to be an important technology in an increasing number of applications. The fundamental mechanisms underlying laser ablation processes are quite complicated, and include laser interactions with the target as well as plasma development off the target. While substantial progress has been achieved in understanding laser ablation on the nanosecond and picosecond time scales, it remains a considerable challenge to elucidate the underlying mechanisms during femtosecond laser ablation. We present experimental observations of plasma development inside silica glass during single femtosecond laser pulse (100 fs, 800 nm) irradiation. Using a femtosecond time-resolved imaging technique, we measured the evolution of a laser-induced plasma inside the glass that has an electron number density on the order of 1019 cm-3. Additionally, we observed an air plasma outside the target which forms long before the explosion of a material vapor plume.© (2002) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.