Abstract

Hydrogenated amorphous silicon (a-Si:H) thin films have been considered for use in solar cell applications because of their significantly reduced cost, however, the overall efficiency and stability are less than that of their bulk crystalline counterparts. Limited work has been performed on solving the efficiency and stability issues of a-Si:H simultaneously. In this study, both surface texturing and crystallization on a-Si:H thin film are achieved through one-step femtosecond laser processing in water. Light absorption is enhanced by light trapping based on surface geometry changes, and the formation of a mixture of hydrogenated microcrystalline silicon (μc-Si:H) and a-Si:H after crystallization suggests that the overall stability may be increased. Furthermore, the formation mechanism for the surface spikes is discussed. A comparison of absorptance spectra for various surface morphologies and crystallinities shows that the combination of surface texturing and crystallization induced by femtosecond laser processing is very promising for a-Si:H thin film solar cell applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call