Abstract
Femtosecond laser direct writing (FLDW) is developing rapidly but to date, there is no native optical isolator (needed to mitigate reflections in any optical system) for the platform. As a step towards integrated glass isolators, we have investigated FLDW in kHz and MHz pulse rate regimes for two magneto-optical glasses (TG20 and MR3-2) to ultimately create one-way structures based on the Faraday effect. Previously, we fabricated basic waveguides obtaining single-mode guidance at 632 nm (the Faraday effect is strongest near the Tb3+ resonance at 485 nm) in both regimes. kHz regime waveguides were isotropic but had high propagation loss due to associated photodarkening (which could be post-annealed). The propagation loss of the MHz regime waveguides was acceptable due to lower photodarkening, but the waveguides were too narrow to confine light properly because of the very strong focus of the writing beam. To try to combine the lower loss with larger waveguide width, we created overlapping structures using a series of superposed waveguides arranged in rings in MHz regime. The confinement in these multi-ring structures was indeed improved and the structure propagation loss was intermediate between that of one-path waveguides created in kHz and MHz regimes. For most other glasses, MHz FLDW systems operate in a heat-accumulation regime, producing waveguide diameters much larger than the writing laser spot size and superposed waveguides that merge into one by melting. Here, the sub-unit waveguides maintained their individual identity indicating that the heat-accumulation effect was absent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.