Abstract

The capability of synchrotron radiation to produce ultrabright emission has attracted considerable interest over the last half a century. To date, magnetic undulators with a period of several centimetres are commonly used for wiggling relativistic electrons in a modulated field. Here, we propose a novel compact undulator with a period down to the submillimetre level based on a spontaneous electric field that is driven by a femtosecond laser. Both the guided energetic electrons and the gyrotron-like undulator are spontaneously produced by irradiating a thin metallic wire with an intense laser pulse. An intense radial electric field instantaneously created on the wire can guide the electrons' helical motion along the wire and induce periodic THz emission. We have demonstrated that this scheme can produce intense THz sources with a conversion efficiency of 1% that are frequency-tunable by adjusting the diameter of the wire. Amplified emission of THz radiation by more than tenfold has been observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.