Abstract

The interaction of 180 fs, 775 nm laser pulses with the surfaces of alumina and glass under controlled gas atmospheres at ambient pressure has been investigated to study material redeposition, residual surface roughness and ablation rate. The effect of using various gases to protect the surface of the material appears to interfere with the effects of the plasma and can change the resulting microstructure of the dressed surface. By varying the combinations of fluence and laser scanning speed during ultra fast ablation at high repetition rates an optimum dressing condition can be reached. The process can be used to continuously dress porous vitrified cutting tools that are used for micro and nanogrinding processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.