Abstract

Patterning multiple filamentation of femtosecond pulses in air is studied using a microlens array for modulation of the spatial profile and a single lens for power concentration. We generate a stable array of filaments containing a maximum of five hotspots per mm2 from a modest 68-GW input power. The evolution of the pattern along the axis of propagation as well as the means to control the inter-filament spacing is discussed. It is also shown in numerical simulations that besides the filamentation in the proximities of the focus, there is a region of early ionization around the central hotspots in the beam profile and a revival afterwards, caused by the spatial distribution of the laser energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call